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ABSTRACT: An outline of the continuous chain model for the description of the tensile
and compressive deformation of polymer fibers below the glass transition temperature
is presented. The basic mechanism is the contraction of the chain orientation distribu-
tion as a result of elastic, plastic, and viscoelastic shear deformation. The deformation
of the fiber is calculated for finite strains and arbitrary values of the orientation
parameter. The model explains the yield and the compressive strength of polymer
fibers. The tensile curve, including yielding, is described in terms of the modulus for
shear between the chains, the chain modulus, the chain orientation distribution, and a
yield parameter. The response to complex time-dependent loading schemes can be
calculated by introduction of the Eyring reduced time model. The elastic tensile defor-
mation of carbon fibers is described in terms of the classical series aggregate model. It
is shown that the modulus for shear between the graphitic planes and the orientation
distribution of these planes govern the tensile and compressive properties of carbon
fibers. The high values of the shear modulus are attributed to some covalent bonding
between the graphitic planes. A survey of the various models for the strength of
polymer fibers is presented and a new model is discussed, which explains the failure
envelope of polymer fibers. © 2002 John Wiley & Sons, Inc. J Appl Polym Sci 83: 508–538, 2002
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INTRODUCTION

Organic polymer fibers offer an impressive range
of mechanical properties. The modulus of these
fibers varies between 1 and 350 GPa, with tenac-
ities up to 6 GPa, compressive strengths up to a
recently achieved value of 1.7 GPa, and a temper-
ature resistance up to 400°C. Nevertheless, the
tensile deformation curves of fibers of linear poly-
mers in the glassy state show a great similarity.
Typical stress versus strain curves of poly(ethyl-
ene terephthalate) (PET), cellulose II, and poly(p-
phenylene terephthalamide) (PpPTA) are shown

in Figure 1. All curves consist of a nearly straight
section up to the yield strain between 0.5 and 2%,
a short yield range characterized by a decrease of
the slope, followed by a more or less concave sec-
tion almost up to fracture. Also, the sonic modu-
lus versus strain curves of these fibers are very
similar (see Fig. 2). Apart from a small shoulder
below the yield point for the medium- or low-
oriented fibers, the sonic modulus is an increas-
ing, almost linear function of the strain. These
similarities suggest that a single mechanism gov-
erns the tensile deformation of these fibers. In
addition to elastic and plastic deformation, poly-
mer fibers show viscoelastic behavior.

Instead of showing yield, the tensile curves of
carbon fibers, polyacrylonitrile- or PAN-based as
well as pitch-based, have a slightly concave shape
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that becomes more linear as the modulus in-
creases. Because strain rate effects are not ob-
served, the deformation is practically purely elas-
tic; indeed, as shown in Figure 3, the observed
creep of carbon fibers is negligibly small.

In both kinds of fibers, the orientation of the
building elements is of paramount importance.
The influence of the polymer chain orientation on
the extensional modulus has already been studied
in an early stage of the development of polymer
physics.1 The use of sonic techniques permitted
precise measurements of the elastic modulus.1–3

For cellulose fibers, de Vries4 performed a system-
atic experimental study of the relation between
the sonic modulus and the orientation measured
by birefringence. A first attempt at describing the
relation between the sonic modulus and the ori-

entation of polymer fibers has been presented by
Moseley.5 Ward used the aggregate model, devel-
oped for the description of the mechanical prop-
erties of polycrystalline materials, for the deriva-
tion of a relation between the orientation and the
anisotropic elastic constants of oriented poly-
mers.6–8 It is based on a series arrangement of
cube-shaped aggregates, which are transversely
isotropic and the symmetry axes of which de-
scribe an orientation distribution. With regard to
polymer fibers, the objections against this model
have already been mentioned by Ward, viz., the
cubes do not satisfy compatibility throughout the
aggregate and thus the continuity of the chain is
not maintained.9 To overcome these objections,
Northolt et al.10,11 proposed a modified series ag-
gregate model for the nonlinear elasticity of the
tensile extension of highly oriented fibers, which
accounts for the presence of long and continuous
chains.

The continuous chain model described in this
report is an improvement on the modified series
model, and provides a simple deformation mech-
anism for the tensile behavior of fibers of different
polymers below the glass transition temperature.
The model applies to fibers built up of flexible,
semi-rigid or rigid-rod chains. It is based on the
single-phase structure represented schematically
in Figure 4, which has been proposed by Northolt
and v. d. Hout.10 This structure has been ob-
served by X-ray diffraction and electron diffrac-
tion for highly oriented paracrystalline polymer
fibers. It is realized that for most polymers this

Figure 1 Typical stress-versus-strain curves of PET,
cellulose II, and PpPTA fibers.

Figure 2 Typical sonic modulus-versus-strain curves of PET, cellulose II, and PpPTA
fibers.

POLYMER AND CARBON FIBERS 509



model is a simplification of the microstructure. In
particular for the interpretation of the mechani-
cal properties of oriented polyethylene (PE) fibers
and films a large variety of structural models has
been proposed. In the review by Porter and
Wang,12 the current structural models for poly-
mer fibers can be found. Most of these models
have a qualitative character. The quantitative
modeling of the tensile properties is confined to
the calculation of the modulus using parameters
that are often not experimentally accessible, such
as the fraction of taut tie molecules or the aspect
ratio of crystalline bridges.12,13 For fibers below
the glass transition temperature, it has been
shown that the chain orientation function is the
dominant structural parameter.8,10,14,15 The con-

tinuous model demonstrates that, for the under-
standing of the main features of the tensile be-
havior of fibers, it is not necessary to consider the
various kinds of structural details, except for the
orientation distribution.

The continuous chain model has been derived
for finite strains up to about 0.05–0.1 and for
fibers with an arbitrary orientation distribution
of the polymer chains. It shows that the tensile
deformation is caused by the combined effect of
the elongation of the polymer chains and the
shear deformation of a small domain containing
the chain segment. The shear deformation causes
the chain segment orientation to change in the
direction of the fiber axis. The main parameters of
the model are the shear modulus g, the chain
modulus ec, and the orientation distribution of
the polymer chains with respect to the fiber axis.
Because the chain modulus of linearly extended
polymers is very large, the deformation of medi-
um- and low-oriented fibers is dominated by the
local shear deformation.16

The yield phenomenon in the tensile curve is
explained by the onset of a sequential and plastic
orientation mechanism of the chains brought
about by the resolved shear stress. The proposed
simple theory shows that the yield strain in ten-
sion varies from 0.5% for highly oriented fibers to
about 2.5% for randomly oriented specimens. Be-
cause yielding in axial compression is governed by
the same deformation mechanism as in tension,
this model also provides an equation for the com-
pressive strength of a polymer fiber.

Early attempts at describing the viscoelastic
and plastic behaviors of polymer fibers were made

Figure 3 (a) The creep and recovery of a PpPTA
(Twaron 1000) fiber compared with the time indepen-
dent behavior of the PAN-based carbon fiber Tenax
HTA. The curves are for a second loading of 1 GPa,
after a first loading for 2 h at the same stress. (b)
Enlargement of (a) with the recovery after creep for a
loading of 1 GPa.

Figure 4 The single-phase structural model for a
polymer fiber.
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by Eyring et al.17–21 Using a three-element model
of two elastic springs and a dashpot describing
non-Newtonian viscosity on the basis of the sta-
tistical thermodynamic theory of reaction rates,
the creep behavior of fibers was modeled. This
approach is phenomenological and does not take
into account the typical structural aspects of the
fiber, such as the orientation distribution of the
chains. However, it will be shown that, by incor-
poration of a modified Eyring process for an acti-
vated viscosity in the continuous chain model, the
effects of viscoelastic and plastic deformation of
fibers below the glass transition temperature can
be modeled.

At larger strains, the curves of the low- and
medium-oriented polymer fibers built up of flexi-
ble chains often show a small convex or even flat
part just before fracture. During this stage of the
deformation process, other mechanisms become
important, for instance parallel slip of polymer
chains or the scission of individual polymer chains.

The extension of the chain involves the purely
elastic deformation of covalent bonds.22 There-
fore, the viscoelastic and plastic deformation can
be attributed to a viscoelastic and plastic local
shear deformation. Because many aspects of the
observed behavior remain unexplained by the
classical theories for viscoelasticity and plasticity,
a new constitutive equation for shear deformation
of a domain will be presented, providing the basis
for the description of the response of polymer
fibers to complex loadings.16

The tensile deformation of carbon fibers has
been described by application of the classical se-
ries model based on cube-shaped elements, which
seems more appropriate considering the shape
and elastic properties of the building elements. It
will be shown that, next to the degree of orienta-
tion of the graphitic planes, the modulus for shear
between these planes to a large extent determines
the tensile and compression properties of these
fibers.23

The first part of this article gives an overview
of the continuous chain model for the tensile de-
formation of polymer fibers, of which more de-
tailed studies have been and will be pub-
lished.24–29 In the second part, the deformation of
carbon fibers is discussed and attention is given to
the influence of the sp3Osp3 carbon-to-carbon
bond between the graphitic planes on the struc-
ture and the mechanical properties of these fi-
bers. Finally, the factors determining the
strength of fibers are reviewed. A brief survey of
the literature is given and a new strength model

is presented describing the failure envelope of
polymer fibers. It is shown that for polymer fibers
the relationships predicted by the various theo-
retical studies are to a large extent in agreement
with the observations.

TENSILE AND COMPRESSIVE
DEFORMATION OF POLYMER FIBERS

The Elastic Extension

The continuous chain model is based on the sim-
ple model for the structure of para-crystalline
polymers represented in Figure 4. The fiber is
built up of long and continuous chains of a lin-
early extended polymer with the average direc-
tion along the fiber axis. Along the chain, the
deformation of small segments of equal length is
analyzed. The immediate surroundings of a small
chain segment are called a domain. The chain,
chain segment, and the surrounding domain are
schematically represented in Figure 5. All do-
mains in the fiber are supposed to have equal and
homogeneous mechanical properties. For reasons
of simplicity, the domains are assumed to have a
transversely isotropic symmetry. The chain seg-
ment is the symmetry axis of the domain and
subtends an angle Q with the fiber axis in the
unloaded state. The orientation angle Q follows a
distribution r(Q), where N(Q)dQ 5 r(Q)sinQdQ
is the fraction of segments with an orientation
angle between Q and Q 1 dQ. The fiber is de-
formed by a tensile stress sf parallel to the fiber
axis. The angle between the fiber axis and the
chain segment of a deformed domain is denoted
by u.

Figure 5 A schematic picture of a chain, a chain
segment, and the surrounding domain.
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It is assumed that the fiber strain is equal to
the strain of a long and continuous polymer chain
with average properties, which is measured along
the fiber axis. This definition is essential for the
analysis, because it implies that the long and
continuous chains do not break during the exten-
sion of the fiber, but it excludes a contribution of
chain slip to the extension of the fiber. The pro-
jection length of the chain onto the fiber axis is
given by L0 5 Lc^cos Q&, Lc being the contour
length of the chain. If no failure of the chain
occurs, the projection length L of the chain at a
tensile stress sf is equal to

L 5 Lc^@1 1 «c~Q, sf!#cos u~Q, sf!& (1)

where «c is the strain of a chain segment. The
brackets ^f(Q)& denote the average value

^f~Q!& 5

E f~Q!r~Q!sin QdQ

E r~Q!sin QdQ

(2)

of f(Q) over all chain segments as being the nor-
malized integral over r(Q)sin QdQ. The strain
definition above implies that the strain of the
fiber is given by

«f 5
L 2 L0

L0
(3)

For the calculation of the fiber strain, it is neces-
sary to calculate the values of the chain strain «c,

and the angle u between the deformed chain seg-
ment and the fiber axis from the deformation of
the domain. This calculation is performed using
the theory of elasticity for finite deformation.26,30

Here, the results are discussed using simplified
arguments.

In the symmetry coordinate system of the do-
main, the components of the Cauchy stress due to
a tensile stress sf are given by

s 5 sfS cos2Q 2sin Q cos Q
sin Q cos Q sin2Q D (4)

The stresses acting on a domain are depicted in
Figure 6. The normal stress sfcos2Q in the direc-
tion of the chain segment causes the elongation of
the segment. Because of the shear stress 2sf sin
Q cos Q the domain is deformed in shear.

In Figure 7, a schematic picture has been
drawn of the deformed domain. The shear defor-
mation causes a rotation of the chain segment in
the direction of the fiber axis. Both the change of
the orientation and the elongation of the segment
give rise to the increase of the projection length of
the chain segment, and thus to the fiber strain.

For an infinitesimal deformation and highly
oriented fibers it is found that the initial modulus
of the fiber is given by

Figure 6 The components of the tensile stress sf in
the orthogonal symmetry coordinate system of the do-
main.

Figure 7 Schematic picture of a deformed rectangu-
lar domain; in the lower part of the picture, the two
contributions to the fiber strain are depicted. The pro-
jection length of the undeformed chain segment is
equal to “a,” the projection length of the elongated
segment is equal to “b,” and the projection length of the
elongated and rotated segment is equal to “c.”
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1
Ef

5
1
ec

1
^sin2Q&E

2g (5)

where ec is the chain modulus and ^sin2Q&E is the
strain orientation parameter of the chains defined
by

^sin2Q&E 5
^sin2Q cos Q&

^cos Q&
(6)

Equation (5) shows that the fiber modulus is
largely determined by orientation of the fiber and
the value of the shear modulus g.

For the calculation of the nonlinearly elastic
tensile behavior of polymer fibers and the in-
crease of the sonic modulus as a function of the
strain, it is necessary to use the theory of elastic-
ity for finite deformations.30 For polymer fibers,
the dominant nonlinear effect is attributed to the
change of the direction of the chain segment
caused by the shear deformation of the fiber. This
is demonstrated by the formula for the orienta-
tion angle u in the limit of highly oriented fibers

tan~u 2 Q! 5 2
sf

2g sin u cos u (7)

The change of the orientation u 2 Q of the chain
segment, caused by the tensile stress sf is curbed
by the decreasing factor sin u cos u. The fiber
strain «f is equal to the sum of the strain of the
chain segment and the rotational strain. For
highly oriented fibers, the strain of the chain seg-
ment «c can be approximated by sf/ec yielding

«f 5
sf

ec
1

^cos u& 2 ^cos Q&

^cos Q&
(8)

A combination of eqs. (7) and (8) yields the typical
concave shape of the elastic stress–strain curve of
highly oriented fibers. For highly oriented PpPTA
fibers, the stress–strain curve at decreasing
stress is almost elastic. In Figure 8, the calculated
stress-versus-strain curve is compared with the
curve at decreasing stress of a Twaront 1000
fiber.

The dynamic modulus of the fiber at a stress sf
can be approximated by

1
Ef

5
1
ec

1
^sin2u&E

2gS1 1
sf

2gD
(9)

Figure 8 The stress–strain curve of a Twaront 1000
fiber at decreasing stress compared with the calculated
curve.

Figure 9 The calculated sonic modulus-verus-strain
curve for several values of the initial modulus. The
elastic constants of PpPTA have been used for the
calculations.

Figure 10 The sonic compliance versus the orienta-
tion measured by X-ray diffraction during the exten-
sion of a low-modulus PpPTA fiber.
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The modulus-versus-strain curve is calculated by
combining eqs. (8) and (9) with eq. (7). Experi-
mentally, the dynamic modulus is measured by
the sonic modulus ES. The sonic modulus is cal-
culated from the velocity of sound v

Es 5 rv2 (10)

where r is the density of the fiber.
In Figure 9, the calculated modulus-versus-

strain curves have been depicted for several val-
ues of the initial modulus and the elastic con-
stants of the PpPTA fiber. Equation (9) predicts a
linear relation between the sonic compliance 1/Ef
and the orientation parameter ^sin2u&E[1 1 sf /

2g]21. This relation has been verified experimen-
tally by a combined sonic modulus-X-ray diffrac-
tion experiment.27 The result for a PpPTA fiber is
shown in Figure 10. The regression line yields a
value of 1.60 GPa for the shear modulus and a
value of 240 GPa for the chain modulus of this
fiber. For heat-treated PpPTA fibers, values of g
up to 2.7 GPa are observed, indicating that the
bonding between the chains increases as the crys-
tallinity increases. Figure 11 shows the relation
between the initial static compliance and the ori-
entation parameter for both species of the new rig-
id-rod heterocyclic ladder polymer poly[2,6-diimi-
dazo(4,5-b:4959-e)pyridinylene-1,4(2,5-dihydroxy)-
phenylene] or PIPD, viz., the as-spun and the
heat-treated fiber. For the heat-treated fiber, g
5 5.9 GPa and ec 5 550 GPa, whereas for the
as-spun fiber are found 3.6 and 375 GPa, respec-
tively. The high value of g of the heat-treated
fiber is attributed to the bidirectional hydrogen
bonding between the chains. The smaller values
for g and ec of the as-spun fiber are wholly attrib-
utable to the fact that this fiber is a crystalhy-
drate.31–33

The slope of the sonic modulus-versus-strain
curve is largely determined by the shear modulus
g. By fitting the theoretical curve to the observed
sonic modulus-versus-strain curve, the value of
the average microscopic shear modulus can be
determined. In Figure 12, the calculated curves
are compared with the curves observed for
PpPTA, PET, and cellulose fibers. The average
value of the shear modulus g calculated from the

Figure 11 The static initial compliance versus the
initial orientation parameter measured by X-ray dif-
fraction for as-spun, and heat-treated PIPD fibers.

Figure 12 The observed and calculated sonic modulus-versus-strain curves of PET,
cellulose II, and PpPTA fibers. The listed g values have been used for the calculations
of the curves.
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sonic modulus-versus-strain curves is character-
istic of the type of secondary bonds between the
polymer chains and the microstructure of the fi-
ber.26,27 Table I shows that also for isotropically
and biaxially drawn sheets, the continuous chain
model gives a good approximation of the initial
modulus.

The Tensile Curve with Yield

The yield deformation of polymer fibers starts at a
strain «y between 0.005 and 0.02. As shown in
Figure 13, the yield strain is a function of the fiber
modulus.24 Up to yield point, the fiber extension
is practically elastic. For larger strains, the ex-
tension is composed of an elastic and a plastic
contribution. Because the plastic deformation
does not contribute to the increase of the tensile
stress, it causes the typical decrease of the slope
of the stress-versus-strain curve. The yield of the
tensile curve of a polymer fiber is explained by a
simple yield mechanism based on Schmid’s law
for the shear deformation of the domains.24,25,28

Schmid’s law states that, for an anisotropic ma-
terial, plastic deformation starts at a critical
value of the resolved shear stress ty along a slip
plane. It has been shown that the shear yield
strain of a domain is approximately constant for a
large number of polymers. Therefore, a critical
shear yield strain, gy 5 0.025, is postulated in-
stead of a shear yield stress. Above the critical
shear yield strain, the plastic shear deformation
of the domain satisfies a plastic shear law. From
the comparison with the experimental curves, it
appears to be necessary to introduce an effect of
strain hardening due to the increasing plastic
deformation. It is proposed that, above the yield
point, the plastic shear deformation «13

( p) is pro-

portional to the difference between the elastic
shear strain «13 and the critical shear strain

«13
p 5 0 u«13u # gy

«13
p 5 p~u«13u 2 gy! u«13u . gy

(11)

whereby the parameter determining the extent of
plastic deformation p and the shear strain «13
have equal signs. The stress-versus-strain curve
of the domain is depicted in Figure 14. For the
calculation of the direction of the chain segment
in an elastically and plastically deformed domain,
eq. (7) is substituted by

tan~u 2 Q! 5 «13 1 «13
p

«13 5 2
sf

2g sin u cos u (12)

The stress-versus-strain curve of a fiber including
yield is computed now by combining eqs. (11) and
(12) for the orientation angle u, with eq. (8) for the
fiber strain. For this calculation, the initial orien-
tation distribution of the chains is required. Fi-

Table I The Observed Tensile Moduli of an
Isotropic PpPTA Fiber, a Planar-Oriented
PpPTA Sheet, an Isotropic PET Fiber, and a
Planar-Oriented Crystalline PET Sheet

Polymer Shape
E

(GPa)
g

(GPa)

PpPTA Isotropic fiber 6.8 1.7
Biaxially drawn sheet 10.4 1.7

PET Isotropic fiber 3.3 0.81
Biaxially drawn sheet 4.9 0.81

The g values have been calculated with eq. (5). For an
isotropic fiber ^sin2Q&E 5 1/ 2 and for a planar-oriented film
^sin2Q&E 5 1/3.

Figure 13 The initial part of the filament tensile
curves of PET fibers with different degrees of orienta-
tion.
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bers obtained by melt spinning and hot-drawing,
such as PET fibers, as well as those made by a
conventional wet-spinning process, such as vis-
cose rayon, have a distribution resembling the
affine distribution.34–37 This distribution is ob-
tained by the deformation of an isotropic sample,
which transforms an angle Q0 in an angle Q ac-
cording to tan Q 5l(23/2) tan Q0 at a draw ratio of
l, resulting in a distribution

r~Q! 5 S l2

cos2Q 1 l3sin2QD3/2

(13)

High-modulus fibers, such as PpPTA, polybenzo-
xazole (PBO), polybenzothiazole (PBT), and PIPD
are made by spinning lyotropic solutions.11,31,33 It
has been shown that in this process the director
field of the domains in the solution is also de-
formed according to the affine deformation
scheme. However, for high draw ratios, the orien-
tation distribution in the fiber is almost com-
pletely determined by the chain alignment within
the individual domains in the solution, which is
governed by the Maier-Saupe mean field potential
yielding a Gaussian-shaped distribution.38

The calculated stress–strain curves have been
compared with the experimental curves of three
PpPTA and two semicrystalline PET fibers. In the
case of PpPTA fibers, the orientation of the chains
was described by a Gaussian distribution func-
tion. Furthermore, a value of 240 GPa was used
for the chain modulus, and a value of 2 GPa for
the shear modulus. In the fitting procedure, the
critical shear strain gy and the “depth” of the
yield characterized by the parameter p were var-
ied; see eqs. (11) and (12). The results for the

PpPTA fibers are shown in Figure 15. For the
calculation of the tensile curves of the PET fibers,
an affine orientation function was applied, and for
the domain properties, the values ec 5 125 GPa
and g 5 1.1 GPa. Figure 16 shows the results and
Table II lists the values for the parameters that
furnish the best fit with the experimental curves
of the PpPTA and the PET fibers. Good agree-
ment for both kinds of fibers is obtained. The
essential features of the experimental tensile
curves, viz., an initial straight section up to the
point of yielding followed by a decrease of the
slope and, subsequently, a curve with increasing

Figure 14 The stress–strain curve of a single do-
main.

Figure 15 The observed stress–strain curves (a) of
three PpPTA fibers compared with the calculated
curves (b).

Figure 16 The observed stress-versus-strain curves
(a) of two PET fibers compared with the calculated
curves (b).
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slope, are also displayed by the theoretical curves.
Moreover, the results for the PET fibers demon-
strate that the use of a single affine orientation
distribution can effectively describe the orienta-
tion of the chains in the amorphous and crystal-
line domains of the fiber. At high stresses near
the maximum of the slope the observed strain
tends to be larger than the calculated strain, pre-
sumably because of slip and fracture of chains. In
the case of PET fibers, flow processes are initiated
during tensile extension at stresses near this
maximum. In addition to these effects, the elastic
response of the domain to the applied stress may
become nonlinear.

From Figures 13 and 15, it can be observed
that the yield strain is a decreasing function of
the modulus. It has been shown that the yield
strain is given by the equation

«y 5 S 1
ec

1
^sin2Q&E

2g D 2ggy

sin Qacos Qa
(14)

with the approximation sin2Qa ' ^sin2Q&E.24 For
most polymer fibers, the chain modulus ec is
much larger than the shear modulus g. In that
case, the yield strain can be approximated by

«y < gytan Qa (15)

From eq. (15), it follows that the yield strain of
isotropic fibers is equal to gy. Indeed, Seitz39 and
Rowe and Roberts40 have found for a large num-
ber of isotropic polymers that the tensile yield
stress is about 0.025 of the modulus, which im-
plies a yield strain of 0.025. Table III shows a
good agreement between the calculated and the
observed yield strain of fibers with different de-
grees of orientation.

In this brief exposition of our theory on yield-
ing, it has been supposed that the yield deforma-
tion of a domain can be described by a simple
shear deformation. Because of the rigidity of the
chains in the domain, the only possible perma-
nent deformation is a simple shear deformation.
In addition, all domains have the same yield prop-
erties. This implies that the yield strain is a con-
tinuous quantity, which varies continuously as a
function of the applied stress and the initial load-
free orientation angle. During extension of the
fiber, the contraction of the orientation distribu-
tion is the result of a sequential orientation mech-
anism due to shear, which is intrinsically linked
to the serial arrangement of domains. This orien-
tation process consists of a plastic and viscoelastic
rotation of the chain axes toward the fiber axis as

Table II The Parameters Used for the
Theoretical Stress–Strain Curves Shown in
Figures 15 and 16

Fiber E (GPa) gy p

PpPTA 71 0.03 3
PpPTA 89 0.03 3
PpPTA 124 0.03 3
PET 13 0.025 3.5
PET 16 0.025 20

Table III The Initial Modulus E, Observed Yield Strain «y, Strain Orientation Parameter,
Shear Modulus g, and Calculated Yield Strain of the Various Fibers and the Semicrystalline
Sheets Investigated

Sample E (GPa) «y (obs) ^sin2Q&E g (GPa) «y (calc.)

PET 3.3a 0.022 0.021
5.6b 0.017 0.341 1.0 0.015

13.5 0.005 0.132 0.009
16.6 0.005 0.105 0.008

Cellulose II 11.6 0.009 0.300 0.015
20.9 0.008 0.159 2.0 0.011
39.9 0.006 0.068 0.009

PpPTA 69 0.008 0.039 0.0057
90 0.007 0.026 2.0 0.0053

123 0.007 0.014 0.0051

The data in columns 4 and 5 differ slightly from those published in Ref. 24 because they have been recalculated according to the
method described in Ref. 27

a Isotropic sheet.
b As-spun fiber.
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demonstrated by the increase of the modulus with
the strain shown in Figure 2. In the continuous
chain model, only shear deformation and chain
stretching contribute to the extension of the fiber.
This has been confirmed by Raman spectroscopy,
which offers a powerful technique for the analysis
of the relationship between the structure and the
deformation processes in polymer fibers.41,42

The Compressive Strength of Polymer Fibers

The derivation of the yield strain in tension can
also be applied to yielding in axial compression.24

This implies that the compressional yield strain,
«yc, is equal to the yield strain in tension «y.
Depending on the definition, according to eq. (15),
the value of the yield strain, «yc in the compres-
sion curve of isotropic specimens lies between
0.02 and 0.03. This is in good agreement with the
values for a variety of polymers, calculated from
the observed compressional yield stress and the
observed compressional modulus: PET 0.026, po-
ly(butylene terephthalate) 0.030, polycarbonate
0.027, aliphatic polyamide or PA 11 0.02.43

For the compressive strength of different kinds
of polymer fibers, DeTeresa et al.44 found the
experimental relation

syc < 0.3G (16)

where G is the torsional modulus of the fiber. This
relation can easily be derived from eq. (14), which
yields

syc 5
2ggy

sin Qacos Qa
(17)

for the compressive strength. For the well-ori-
ented fibers considered in the empirical relation
of DeTeresa et al.,44 the range of the orientation
parameter is about 0.015 , ^sin2Q&E , 0.05.
Using gy 5 0.025, this range yields for the com-
pressive strength

0.23g , syc , 0.41g (18)

As for filaments with random lateral texture, the
filament torsion modulus G is approximately
equal to the internal or micro-shear modulus g;
eq. (18) agrees well with the observed relation.
The strong link between the shear modulus and
the compressive strength is illustrated by the new
rigid-rod polymer fiber PIPD with a bidirectional

hydrogen-bonded network between the chains re-
sulting in g 5 5.9 GPa and a filament compres-
sive strength of 1.7 GPa, the highest value ever
observed for an organic polymer fiber.31–33 Al-
though PBO and PBT have similar rigid-rod het-
erocyclic chains, their compressive strength is
rather low, viz., 0.3 GPa, because of the weak
interaction between the chains.

Similar to the yield strain in tension of ori-
ented fibers, eq. (17) shows that the yield strain in
axial compression should be an increasing func-
tion of the orientation parameter ^sin2Q&E, and
thus a decreasing function of the modulus. This
behavior of the compressional yield strain has
been observed by various authors.24,45,46 For ex-
ample, van der Zwaag and Kampschoer47 found
that for PpPTA fibers the compressive filament
strength increases from 0.5 to 0.85 GPa as the
modulus increases from 50 to 160 GPa.

The Viscoelastic Extension

During creep of PpPTA, cellulose, and PET fibers,
a linear relation between the sonic compliance
and the creep strain has been observed.11,14,15,48

A typical example of the strain and the sonic
compliance during the creep of a Twaron 1000
PpPTA fiber is shown in Figure 17(a,b). For this
fiber, the logarithmic creep law «(t) 5 «0 1 C
log(t) has been frequently confirmed by experi-
ments. The constant C is called the logarithmic
creep coefficient. The linear relation between the
sonic compliance and the strain during creep is
similar to the relation between these quantities
during the elastic extension. Because the increase
of the modulus during the elastic extension is

Figure 17 The creep strain versus the time (a) and
the sonic compliance versus the creep strain (b) for a
Twaron 1000 fiber.
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caused by the shear deformation of the domains,
this observation indicates that creep is due to a
viscoelastic shear deformation of the domains. It
has been proposed that the shear creep is propor-
tional to the shear stress on the domain

«13~t! 5 @j0 1 j~t!#s13 (19)

with s13 sinq cosq, j0 5 (2g)21 and j(t) 5 j,
log(t).16 Using this relation, the creep as a func-
tion of the applied stress and the orientation of
the fiber can be calculated. The creep strain can
be approximated by

«f~t! 5 sN

j1

2 log~t! (20)

where for highly oriented fibers, the normalized
creep stress sN is given by

sN 5 sf

^sin2Q&E

S1 1
sf

2gD
3 (21)

In eq. (20), the logarithmic creep law has been
applied to the time-dependent part of the fiber
compliance j(t). Equation (20) predicts that the
logarithmic creep coefficient of PpPTA fibers is
proportional to the normalized creep stress sN. A
somewhat better approximation for the normal-

ized creep stress, taking into account the effect of
the plastic deformation, can be calculated from
the elastic modulus Ef of the loaded fiber at the
beginning of the creep experiment

sN 5 2gsfS 1
Ef

2
1
ec
D (22)

Formulas (20) and (22) have been compared with
creep experiments as a function of the creep load
and the initial orientation of the fiber. In Figure
(18a), the experimental values for the creep coef-
ficient of a set of PpPTA fibers with different
initial moduli are plotted versus the creep stress
sf. The creep coefficient is a decreasing function
of the initial modulus of the fiber and follows a
typical convex curve as a function of the stress. In
Figure 18(b), the same values of creep coefficient
are plotted versus the normalized stress accord-
ing to eq. (21). In Figure 18(c), for a selection of
two PpPTA fibers, the creep coefficient is plotted
versus the normalized stress calculated with eq.
(22). These figures show indeed that a plot of the
creep coefficient versus the normalized stress fol-
lows a straight line. So, the logarithmic creep
coefficient of PpPTA fibers with an arbitrary
value for their orientation parameter can be cal-
culated by the proposed theory.

The viscoelastic deformation of the fiber is as-
sumed to be the result of the viscoelastic simple

Figure 18 The creep coefficient for a set of PpPTA fibers with different initial moduli
versus the tensile stress (a) and the normalized tensile stress (b), (c).
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shear deformation kv(t) of the domain and de-
pends on the same stress as the elastic shear
deformation. Furthermore, kv(t) is a function of
the load history of the shear stress t(t) and given
by

kv~t! 5 E
0

t

j~t 2 t9!
dt~t9!

dt9 dt9 (23)

where j(t) is the viscoelastic shear compliance.
Thus, for the elastic plus viscoelastic shear defor-
mation, eq. (7) is replaced by

tan@u~t! 2 Q# 5
t~t!
2g 1

kv~t!
2 (24)

Equations (23) and (24) are the constitutive equa-
tions for the viscoelastic deformation of a single
domain, which together with eq. (8), form the
constitutive equations for the viscoelastic defor-
mation of the fiber.16 Because the tensile behavior
of other technical yarns such as PET and cellulose
is similar to the tensile behavior of PpPTA
yarns,14,15 it is expected that also the creep and
more complex loadings of these fibers can be de-
scribed by the proposed theory.

We have briefly discussed herein the response
of polymer fibers to complex loadings, of which a
full description has been presented in the thesis
by Baltussen.16 From this research, the following
major conclusions can be drawn. A constitutive
equation for polymer fibers below the glass tran-
sition temperature should describe: 1. the nonlin-
ear elastic deformation, and 2. the yield, i.e., an
immediate plastic and semiplastic deformation;
the first being immediate on the time scale of the
deformation, the latter being an immediate “plas-
tic” deformation which recovers as a function of
the time elapsed after the load has been removed.
Initially, after the load on a fiber has been re-
moved, the yield point in the range of 0.005–0.02
strain has disappeared. During the recovery pro-
cess, the yield at the beginning of the stress–
strain curve slowly increases as a function of the
recovery time.24 After very long recovery times,
the yield point becomes almost equal to the yield
point of the fiber before the loading. Above the
maximum load value of the preceding load cycles,
the stress–strain curve follows the stress-versus-
strain curve of the unloaded fiber.

Furthermore, the constitutive equation should
describe the delayed elastic deformation and de-

layed permanent deformation. The time-depen-
dent deformation is partly reversible (delayed
elastic), and partly permanent (delayed perma-
nent). The creep and stress relaxation of oriented
polymer fibers is nonlinear with the applied
stress. Creep and stress relaxation are related by
the mechanical modulus of the fiber. This implies
that the viscoelastic and yield deformation are
coupled. The creep and stress relaxation of me-
chanically conditioned fibers is lower than the
creep of mechanically conditioned fibers. The lin-
ear superposition principle does not apply to the
deformation of polymer fibers above the yield
point. A strong interaction between the yield and
viscoelastic deformation has been observed. Vis-
coelastic relaxation results in a lower yield defor-
mation in a subsequent extension of the fiber.
Independently from the preceding loading pro-
gram, above the maximum foregoing stress, the
deformation of the fiber returns to the normal
stress-versus-strain curve. The loading history
seems to be erased by the subsequent deforma-
tion.

Many of these important aspects of the defor-
mation of polymer fibers can be understood from
the continuous chain model, which is based on
simple, elementary deformation principles for the
domain. In the next section, a new model for the
time-dependent deformation, as well as the yield
deformation is presented.

The Eyring Reduced Time Model

Separating the viscoelastic and yield properties is
very useful in describing the response of polymer
fibers to simple loading schemes, such as defor-
mation at a constant rate of strain or the defor-
mation at a constant load. However, it has been
shown that the viscoelastic and yield deformation
cannot be separated if complex loading schemes
are considered.16 For example, it turns out that
the relation between stress relaxation and creep
cannot be understood if only the viscoelasticity of
the fiber is considered. Even such a simple case
cannot be described by the linear theory of vis-
coelasticity. Another example is the typical re-
sponse of a polymer fiber after a period of stress
relaxation, as shown in Figure 19. Initially, the
deformation is almost elastic, but after some de-
formation the stress-versus-strain curve contin-
ues along the original stress-versus-strain curve
of the fiber. These phenomena are hardly explica-
ble within the framework of the classical theories
for viscoelasticity and plasticity.
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From the study of the deformation of isotropic
polymers, it is known that the yield is dependent
on the deformation rate and the temperature.49

This information has led to the assumption that
the yield deformation and viscoelasticity are at-
tributable to a single process.50 A similar strain
dependence of the tensile curve can be observed
for oriented polymer fibers. An example of the
effect of the strain rate on the stress–strain curve
of the PET fiber Diolent 174S and the PpPTA
fiber Twaron 1000 is presented in Figure 20.

All of the observed phenomena related to the
tensile behavior of polymer fibers, including the
strain rate dependence of the stress-versus-strain
curve and the response to complex loading
schemes, can be described by a process of acti-
vated shear transitions with a distribution of ac-
tivation energies. The Eyring reduced time model

combines the idea of a reduced time introduced by
Shay, and the Eyring model for an activated vis-
cosity.18,51

An activated transition is characterized by two
states separated by an energy barrier U (see Fig.
21). The transition from state 1 to state 2 corre-
sponds to a small amount of shear strain. An
applied stress causes a shift of the energies of
these states, such that the transition 1 f 2 is
enhanced. If the total occupation is limited, the
relaxation of the transition due to an applied
stress is approximately described by the equation

dN1

dt 5 2
N1

t
(25)

where

t 5 A21expF~U 2 sV!

kT G (26)

Equation (26) is the well-known formula for the
relaxation time of an Eyring process. It suggests
that the velocity of the relaxation process is
scaled by the factor t. This can be expressed by
the introduction of a reduced time tU

tU 5 E
0

t dt9
t~t9! (27)

Figure 21 The site model for the plastic shear tran-
sition.

Figure 19 The stress-versus-strain curve of a Twaron
1000 fiber with a period of stress relaxation at a strain
of 0.01.

Figure 20 The strain rate dependence of the stress-
versus-strain curve of PpPTA and PET fibers.
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The relaxation time t depends on the time via the
stress s(t). Assuming a distribution of plastic
transitions I(U), the total strain is given by

«~t! 5
1
2 E

0

`

I~U!@1 2 exp~2tU!#dU 1
s~t!
2g (28)

Equation (28) can be analyzed numerically or al-
gebraically for a specific loading scheme and
shape of the plastic transition density function
I(U). Figure 22 shows the relaxation time for the
plastic shear transition plotted against the stress
for two temperatures. In Figure 23, the stress-
versus-strain curves are presented for several
values of the stress rate, using the density func-
tion I(U) 5 0 for U , 0.05 and I(U) 5 I0 for U

. 0.05. The constant stress rate was chosen for
computational reasons. Because of the step in the
density function at U 5 0.05, a yield point was
calculated at a strain of 0.025. The calculated
curves show a good resemblance to the experi-
mental curves of Figure 20. The experimental
stress-versus-strain curves as a function of the
deformation rate can be calculated using eq. (28)
for the shear deformation of the single domain in
the continuous chain model. Figure 24 shows the
calculated stress–strain curve after a period of
constant stress. Also, this curve shows a good
resemblance to the experimental curve presented
in Figure 19. Initially, the deformation is almost
elastic, but after a certain deformation, the
stress-versus-strain curve continues along the
normal stress–strain curve.

In addition to these two examples, the pro-
posed constitutive equation explains many other
experimentally observed features of the tensile
behavior of polymer fibers in the glassy state. For
a flat density function, I(U), a constant creep rate
versus the logarithm of the time is calculated,
which is in agreement with the creep of many
polymer fibers in the glassy state. The predicted
relation between creep and stress relaxation is
correct. The strain and temperature dependence
of the yield stress as calculated by eq. (26) is
approximately equal to the outcome obtained by
Bauwens’s formula. This formula has been con-
firmed by many experiments.9,49 Provided the
right plastic transition density function is chosen,
and the transition state 2 f 1 is considered, it is
believed that the response of polymer fibers in the
glassy state to complex loading schemes can be

Figure 24 The calculated response to an alternating
period of constant strain rate and constant stress. After
the constant stress, the stress-versus-strain curve re-
turns to the normal stress-versus-strain curve.

Figure 22 The relaxation time of an Eyring process
as a function of the stress, for a low and a high tem-
perature.

Figure 23 The calculated stress-versus-strain curves
as a function of the stress. Above the yield point these
curves follow parallel lines.
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predicted by the continuous chain model in com-
bination with a constitutive equation for the
shear deformation of the domain based on eq.
(28).16,29 Finally, the introduction of the so-called
normalized creep stress given by eqs. (21) and
(22) should also have consequences for the anal-
ysis of the creep failure and lifetime of polymer
fibers.

CARBON FIBERS

Carbon fibers are distinguished by their high
modulus, ranging from 200 to 700 GPa, and their
brittle behavior. They exhibit a strength up to 7
GPa only at a short test length. Whereas polymer
chains are one-dimensional objects, in carbon fi-
bers, the building elements are formed by the
graphitic (or basal) planes with some covalent
bonds between them.52–55 An aggregate in carbon
fiber consists of a stack of graphitic planes ex-
tending in all directions. The graphitic layer
planes are preferentially oriented parallel to the
fiber axis. Because of the turbostratic structure of
the basal planes in PAN-based fibers, no regular
three-dimensional arrangement is found. In the
mesophase pitch-based fibers, however, a more
ordered structure of the basal planes is observed,
as demonstrated by the considerably larger val-
ues of the crystallite dimensions and a smaller
interplanar distance d(002) than in PAN-based
fibers, approaching the graphite crystal value of
0.335 nm. Table IV illustrates that the properties
of the aggregates in carbon fibers are rather dif-
ferent from those in polymer fibers. Presumably,
the extent of the individual basal planes is con-

siderably smaller than the length of a polymer
chain. Consequently, the constraint of continuity
of the building element between the sequential
arranged domains during extension of the fiber
probably is not required. Therefore, a description
of the elastic tensile deformation of carbon fibers
using the classical series aggregate model seems
to be best suited to the purpose.16 In the classical
model, the fiber is considered as a series arrange-
ment of cube-shaped building blocks, which for
well-oriented carbon fibers yields for the modulus

1
E 5

1
e1

1
^cos2f&

g (29)

where e1 is the modulus parallel to the graphite
plane, g the modulus for the shear of the basal
planes, and f the angle between the c axis normal
to the basal plane and the fiber axis. The differ-
ence with the polymer fibers should be noted here:
the denominator in the second term is g instead of
2g in eq. (5). In carbon fibers, the graphite planes
are highly oriented parallel to the fiber axis as
shown by the range of the orientation parameter
0.003 , ^cos2f& , 0.080.23 Figures 25–27 present
the experimental results for PAN-, cellulose-, and
pitch-based carbon fibers, respectively, and con-
firm eq. (29).23,56 Further development of the
model has yielded the concave shape of the tensile
curve of carbon fibers.23 A similar model also
based on the rotation and extension of crystallites
has been described by Shioya and Takaku.57

Nongraphitized PAN-based fibers have a shear
modulus, g, varying from 20 to 35 GPa, the rayon-
based fibers have one varying from 14 to 21 GPa,

Table IV Comparison of the Dimensions and Elastic Constants of the
Elements and Aggregates in Polymer and Carbon Fibers16

Property
Polymer

Fiber

Carbon Fiber

PAN Pitch

Building element dimensions 1 2 2
La (nm) .100 3–25 18–60
Lc (nm) 5 1–5 13–20
Aspect ratio La/Lc .20 3–5 1–3
ec or e1 (GPa) 90–550 '1000a '900a

g 1–6 30 12
Ratio ec/g or e1/g 100 33 75

For the polymer fiber, the chain length has been taken for the distance La.
a In two directions.
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and the pitch-based fibers between 6 and 12 GPa,
whereas for a graphite crystal, g 5 5 GPa. These
values agree well with the torsional modulus, G,
of the filaments, which are 25, 14, and 11 GPa,
respectively, and depend on the temperature and
the duration of the final heat treatment in the
manufacturing process.58–60 The different values
found for the shear modulus indicate a variable
degree of interconnections between the graphitic
planes, for which several models have been pro-
posed. For example, Johnson52 considers a “rib-
bon-like” model of undulating planes in which a
three-dimensional interlinking is realized through
twisted planes which pass through several adja-
cent crystallites. An alternative explanation is
provided by the possible presence of sp3Osp3

bonds between the planes. This hypothesis is sup-

ported by the absence of yielding in the tensile
curve and by the absence of any time-dependent
elastic effects in carbon fibers (see Fig. 3). More-
over, given the above-mentioned values for the
local shear modulus in polymer fibers, it is diffi-
cult to believe that only secondary bonding be-
tween the basal planes leads to the high shear
moduli found in the carbon fibers.

Experimental evidence for the sp3Osp3 bonds
between the basal planes in carbon fibers is ob-
tained from laser Raman scattering.42,53,61–64

Graphite and all carbon fibers show the Raman
active vibration mode E2g2 at 1583 cm21 (in the
literature also designated as the G line). In addi-
tion, carbon fibers also show a band at about 1360
cm21 (also known as the D line), whereas the
spectrum of diamond only shows a peak at 1322
cm21. Moreover, there is a great similarity be-
tween the Raman spectra of the nongraphitized
PAN-based fibers and the amorphous carbon
films prepared by the chemical vapor deposition
method.65 The extreme hardness of these films is
attributed to the diamond-like bonds in these
films.66 Raman spectra are very sensitive to
changes that break the translational symmetry
such as lattice defects, which occur frequently in
carbon fibers. As a result, a disorder-induced (DI)
mode appears in these fibers at about 1360 cm21,
which can also be attributed to stretched
sp3Osp3 bonds. Yet, some authors do not go as
far and assign this line only to structural disorder
or the presence of sp3 bonds at the crystal bound-
aries.67 So, apart from the distance between the
basal planes d(002) and the crystallite dimen-
sions, the disorder or the degree of interplane
bonding in carbon fibers can be quantified by the

Figure 25 Compliance as a function of the orienta-
tion parameter for PAN-based fibers, g 5 29 GPa. The
fibers are of the low- and intermediate-modulus types
from two manufacturers.16 Estimated error in paren-
theses.

Figure 26 Compliance as a function of the orienta-
tion parameter for cellulose-based fibers; g is 21 GPa.
The fibers are from a single manufacturer.56

Figure 27 Compliance as a function of the orienta-
tion parameter for pitch-based fibers; g 5 12 GPa. The
fibers are from a single manufacturer.16

524 NORTHOLT AND BALTUSSEN



ratio of the integrated intensities of the DI and
the E2g2 modes. Figure 28 demonstrates the close
correlation between this ratio and the shear mod-
ulus, g, of graphite and various carbon fibers ob-
served by Peters.68 The lower precision of this
ratio for the nongraphitized PAN fibers is due to
the broad peak at 1360 cm21; for increasing
graphitization, this peak becomes sharper.

We believe that data on the transition from
diamond to graphite are relevant to the interpre-
tation of the 1360 cm21 band. Grains of diamond
show a detectable formation of graphite on their
surface after 45 min at 1650°C. Between 1700 and
1900°C, a rapid increase of the graphitization
rate is observed.69,70 This corresponds with the
development of the graphitic structure as a func-
tion of the heat treatment temperature in the
manufacturing process of PAN–carbon fibers.
Presumably, for increasing temperatures in the
final heat treatment of PAN-based fibers, espe-
cially above 1700°C, an increasing number of co-
valent crosslinks between the basal planes are
broken. This causes a decrease of g and of the
spacing d(002), an increase of the apparent crys-
tallite size parallel to the basal plane, La, and of
the crystallite size along the c axis, Lc. In Figure
29, the shear modulus is plotted as a function of
the spacing d(002) for pitch-based, graphitized
PAN, partly graphitized PAN-, and nongraphi-
tized PAN-based fibers. Because of the very broad
equatorial X-ray diffraction peak found for these
fibers, the scatter of the d(002) spacings of the
partly graphitized and the nongraphitized PAN
fibers is quite large. The structural features of

these fibers are illustrated in Figure 30(a–c),
which shows the bright-field electron microscopic
images of thin sections with a thickness of 80
nm.71 The differences between these fibers ob-
served in the micrographs are also revealed by
the values of d(002), La, and Lc, which are listed
in Table V. Because the shear modulus and the
crystallite sizes of PAN-based fibers are strongly
influenced by the final heat treatment or graphi-
tization stage of the manufacturing process, the
data for the plot representing the compliance ver-
sus the orientation parameter according to eq.
(29) should be selected from fibers having approx-
imately the same values for d(002), La, and Lc.

The Compressive Strength of Carbon Fibers

Presumably, the variable degree of the interpla-
nar covalent bonding also governs the torsional
modulus and the compressive strength of these
fibers. The low g value of the pitch-based fibers
results in a low compressive strength varying
from 0.5 to about 1.1 GPa, compared with 2.0
GPa and over for the PAN-based fibers. Sawada
and Shindo59 observed that the torsional mod-
ulus decreases with an increasing tensile mod-
ulus for PAN- and pitch-based fibers and, in
addition, that the pitch-based fibers exhibit
lower torsional moduli than the PAN-based fi-
bers. Kumar72 found that for PAN- as well as for
pitch-based fibers, the compressive strength de-
creases with increasing tensile modulus. Fur-
thermore, he suggests that the width of the
graphitic sheets, the crystallite size perpendic-

Figure 29 The shear modulus g as a function of the
lattice spacing d(002) for the graphite crystal, pitch-
based, graphitized PAN, partly graphitized PAN, and
nongraphitized PAN-based fibers.16 The dashed line is
an exponential fit to the data.

Figure 28 The intensity ratio of the Raman peaks
I(DI)/I(E2g2) as a function of the shear modulus. For
increasing g, the samples are: graphite crystal, three
pitch-based fibers, two partly graphitized PAN-based
fibers, and three nongraphitized PAN-based fibers.68
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ular to the fiber axis (La and Lc), and the crystal
anisotropy largely account for the considerable
differences in compressive strengths between
the various carbon fibers.73 In our view, these
observations are consistent with the above-
mentioned relations between the degree of
sp3Osp3 covalent bonding of the basal planes,
the local shear modulus g, the tensile modulus,
the crystal dimensions, and the final heat treat-
ment. High-modulus PAN-based and pitch-
based fibers are made by the application of
higher temperatures in the final process stage.
As this increases the graphitization, the value
of g is reduced, and consequently the compres-
sive strength. As a result, it is not surprising to
find that a decreasing compressive strength cor-
relates with an increase of the basal plane ori-
entation and with an increase of La and Lc.

So, at the heart of the mechanical properties of
carbon fibers is the value of the shear modulus,
which is established by the temperature and the
duration of the final heat treatment in the man-
ufacturing process. This process results in a de-
crease of the orientation parameter ^cos2f&, an
increase of crystallinity of the fibers, as demon-
strated by the higher values of La and Lc, in a
decrease of the porosity, in a decrease of the local
shear modulus g and the torsional modulus of the
filament G. Consequently, the high-modulus fi-
bers are obtained by annealing at temperatures
above 2200°C, whereas the high-strength fibers
with a low modulus have not seen temperatures
above 1500°C.

Besides the modulus for shear between the basal
planes, also the lateral texture of these planes in the
cross-section influences the torsional modulus of the

Figure 30 Bright-field lattice images of (a) nongraphitized PAN-based fiber, (b)
partly graphitized PAN-based fiber, and (c) pitch-based fiber. Original magnification
3.1 3 106. The structural parameters of these fibers determined with X-ray diffraction
are listed in Table V.71
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carbon fiber. The radial texture yields the lowest
torsion modulus, whereas the onion texture results
in the highest torsion modulus of the pitch-based
fibers.59,74 The lateral texture also affects the com-
pressive strength of the pitch-based fibers. In this
regard, a folded-radial texture appears to inhibit
shearing of the basal planes, which may account for
the superior compressive strength at all modulus
levels compared with fibers with flat-layer tex-
tures.75 Apart from the radial texture and other
morphological features such as porosity, just as for
the polymer fibers, there is a clear relation between
the compressive strength and the shear modulus, g,
(or torsion modulus G) of carbon fibers, which is sc
' cg with 0.1 , c , 0.2.23,60

THE STRENGTH OF FIBERS

The tensile strength of fibers is determined by
intrinsic parameters such as the elastic modulus
of the building element from which the fiber is

composed, by the intermolecular bonds between
the elements and, in the case of polymer fibers, by
the chain length distribution. The manufacturing
process, however, introduces all kinds of imper-
fections like inhomogeneities, impurities, and
voids, which are designated here as extrinsic fac-
tors. They result in imperfect intermolecular
bonding between the chains and may give rise to
stress concentrations leading to fracture after a
catastrophic growth of preexisting cracks. These
imperfections cause the size effects, i.e., the
transverse effect, or the dependence of the
strength on the fiber diameter, and the longitudi-
nal effect or the dependence of the strength on the
test length.76–78 Two different approaches can be
recognized for the description of size effects. The
first is based on the mechanism of crack propaga-
tion by the concept of Griffith, which considers the
energy balance between the external work, the
surface energy of the crack, and the elastic energy
of the material.79,80 Griffith’s theory is based on
the elastic theory of infinitesimal deformations,
and so does not apply to highly deformable mate-
rials. It can only be applied to the transverse
effects, and leads to the semiempirical equation

1
sb

5
1

sth
1 K z D1/2 (30)

where sb is the actual strength of the fiber, sth is
the strength of the flawless fiber, K a constant,
and D the diameter of the fiber.81 It was later
shown by Penning et al.77 that the scaling of the
tensile strength with D21/ 2 can be derived from
geometrical considerations. An example of this
relation is presented in Figure 31, where the yarn
strength of PpPTA fibers is plotted versus the
filament diameter.82 For the strength of a flaw-
less PpPTA filament, extrapolation yields sth
5 16 6 4 GPa.

Table V Structural Parameters of the
Nongraphitized PAN-Based Fiber, the Partly
Graphitized PAN-Based Fiber, and the Pitch-
Based Fiber of Which the Bright-Field Lattice
Images are Shown in Figure 30

Fiber
d(002)
(nm)

La

(nm)
Lc

(nm)

Nongraphitized PAN 0.3460 3.7 1.7
Partly graphitized PAN 0.3436 23.4 5.1
Pitch-based 0.3411 59.2 17.0

Figure 30 (Continued from previous page)
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Whereas in the second approach it is also as-
sumed that fracture is controlled by a critical
defect, the strength is considered a statistically
distributed parameter rather than a physical
property characterized by a single value. The sta-
tistical distribution of fiber strength is usually
described by the Weibull model.83,84 In this weak-
est-link model the strength distribution is given
by

P~s! 5 1 2 expF2VSs

so
DmG (31)

where P(s) is the cumulative failure probability
at a stress s, so a scale parameter, V the speci-
men volume, and m the Weibull modulus. To
make a so-called Weibull plot of a yarn P(s) is
approximated by

P 5
ni

n 1 1 (32)

where ni is the number of filaments that have
fractured at or below a stress s and n is the total
number of filaments tested. The size dependence
is expressed through V, which is determined by
the cross-sectional area A of the fiber and the test
length L. Considering here only the length depen-
dence of the strength, eq. (31) can be written as

ln@2ln~1 2 P!# 2 ln L 5 m ln s 2 m ln so (33)

Thus, given a Weibull distribution of the filament
strength, a plot of ln[2ln(1 2 P)] versus ln s
results in a straight line with a slope m, called the
Weibull modulus. For the range 5 , m , 30, the

relation between the coefficient of variance of the
filament tenacity distribution and m is given by
cv 5 1.2/m. Figure 32 presents an example of a
Weibull plot for the filament strength of a PpPTA
yarn, yielding a Weibull modulus of 20.6.

The average fracture stress of the filaments for
a test length L is given by

^s& 5 soL21/mGS1 1
1
mD (34)

where G is the gamma function.76 Equation (34)
shows that the average strength depends on the
test length of the fiber sample, which can be ex-
pressed as

Figure 32 Example of a Weibull plot for the filament
strengths for a test length of 10 cm of a PpPTA yarn
yielding a Weibull modulus of 20.6.

Figure 33 The logarithm of the average filament
strength (n 5 40) as a function of the logarithm of the
test length for an intermediate-modulus PAN-based
carbon fiber with an impregnated bundle strength of
5.7 GPa.

Figure 31 The strength of PpPTA yarns versus the
diameter of the filaments.
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ln~^s&! < const. 2
1
m ln~L! (35)

Thus, Weibull moduli can be derived from the
strength distribution at a fixed test length as
shown by eq. (33) and from a plot of the average
filament strength as a function of the test length
according to eq. (35). In Figure 33, an example of
relation (35) is presented for a PAN-based carbon
fiber.85 From this plot, a value m 5 7.2 with an
estimated standard deviation (e.s.d) of 0.7 is de-
rived, whereas the m values obtained from the
strength distributions at fixed length are: 5.2 (0.6)
for 2 mm, 5.1 (0.6) for 10 mm, and 4.6 (0.6) for 25
mm, with e.s.d.’s in parentheses. Apparently, the
length effect is weaker than expected from the
width of the strength distributions, which may
indicate that adjacent segments in the carbon
filament are not statistically independent, as as-
sumed by the weakest-link theory. With regard to
the application of fibers in uniaxially reinforced
composites, the critical length of a fiber is the test
length for which the filament’s tenacity is equal to
the impregnated bundle strength. Because the
impregnated bundle strength of this carbon fiber
is 5.7 GPA, it follows from Figure 33 that the
critical length is 4.5 mm.

Penning et al.77 studied the transverse and
longitudinal size effects in high-strength polyeth-
ylene fibers and found that the length or longitu-
dinal size effects become weaker as the tensile
modulus of the fiber increases, whereas diameter
effects become more pronounced as the modulus
increases. In particular, the length effect disap-
peared almost completely for PE fibers with a
draw ratio of 70. This is attributed to the fact that
the high-modulus PE fibers do not possess a dis-
tribution of macroscopic flaws, occurring at dis-
tances of the same order of magnitude as the
applied test lengths, but contain a microscopic
defect structure at very short intervals of about
100 nm. The authors concluded that, apparently,
transverse and longitudinal effects have different
physical backgrounds and, therefore, cannot be
described simultaneously by the statistical theo-
ries such as the weakest-link hypothesis. In the
case of high-modulus/high-strength fibers made
by the wet-spinning process, the transverse size
effect is difficult to detect, because a decrease of
the filament diameter is often accompanied by an
increase of the tensile modulus which, as shown
in the next section, also results in an increase of
the strength. In this regard, the conclusions

drawn from Figure 31 should be considered with
some caution.

Weibull moduli of filaments taken from yarns
range from 5 for the brittle carbon fibers to about
50 for the ductile melt-spun PET fibers. An exten-
sive discussion of the concept of fiber strength, the
Weibull modulus, and its relation to fracture
toughness has been given by van der Zwaag.76 An
increase of the material toughness will result in
an increase of the Weibull modulus, because in-
corporation of local plastic deformation will de-
crease the stress concentratoins in the fiber. This
is much easier achieved with flexible chains than
with rigid-rod chains, not to mention the gra-
phitic planes. Van der Waals and hydrogen bonds
offer more advantages in this respect than cova-
lent bonds between the building elements. Hence,
the Weibull modulus of yarns decreases according
to the sequence: PE, PET, cellulose, PpPTA, PBO,
and carbon fiber. The particularly low value of the
Weibull modulus of carbon fibers is a consequence
of the brittleness of these fibers. Therefore, the
increase of the strength of carbon fibers calls for
extreme care at each stage of the process to pre-
clude any kind of flaw-producing impurities.55

Melt-spun fibers such as PET displaying a
“flag” or a plastic mode of deformation at the end
of the tensile curve have a high Weibull modulus
for the filament strength distribution, but their
elongation at break shows a large variance. At
low tensile speeds, these fibers display ductile
fracture initiated by crack growth, and for in-
creasing testing speeds, the melt fracture mor-
phology becomes dominant. Adiabatic heating of
the fiber during rapid cold drawing will raise the
temperature well above the glass transition tem-
perature.86 But even at medium strain rates of
100%/min, tiny irregularities in the fiber may
cause localized drawing or “necking,” whereby the
temperature can even approach the melting tem-
perature, resulting in an extra elongation before
failure. Hence, this random phenomenon of “hot
spots” occurring during cold drawing causes the
wide range of elongations at break observed dur-
ing filament testing of PET fibers. With regard to
the failure mode of melt fracture, it is significant
to note that polymer fibers, such as cellulose,
PpPTA, PBO, and PIPD, which do not have a
melting temperature, always display a fibrillar
fracture morphology, whereas fibers with a melt-
ing temperature, like PE, PET, and the aliphatic
polyamides, show melt-fracture-related phenom-
ena during cold drawing.
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Weibull plots of various fiber properties can
provide important information on the quality and
the performance of the manufacturing process.
The results can be used to formulate a strategy
for the improvement of the yarn properties. As
shown in the next section, polymer fibers will gain
additional strength by an increase of the molecu-
lar weight and by a more contracted orientation
distribution, i.e., a higher modulus. For the wet-
spun fibers, a strength increase will be achieved
by improvement of the coagulation process, which
makes for a more uniform structure and chain
orientation in the cross-section of the fiber, and by
a reduction of the amount of impurities.

Theoretical Aspects

For the description of the intrinsic or ultimate
tensile strength of polymer fibers, several models
have been developed. A simple model of particular
relevance to high molecular weight polyethylene
was proposed by Penning et al.87 The fiber is
thought to be composed of microfibrils consisting
of an almost infinite sequence of crystalline blocks
separated by disordered domains. The adjacent
crystalline blocks are connected by taut tie mole-
cules. Failure of the fiber occurs when the tie
molecules are stressed to fracture. Termonia et
al.88,89 considered the case of perfect fibers made
of an ordered array of fully extended and parallel-
oriented chains, with no defects other than chain
ends resulting from finite molecular weight. The
model is based on the kinetic theory of fracture in
which bond ruptures are simulated by a Monte
Carlo process on a three-dimensional array of
nodes. Strong bonds between the nodes in one
dimension account for the covalent bonds in the
chain and weak bonds between the nodes in the
other two dimensions represent the secondary
forces. The results of this study are quite inter-
esting and agree well with some general observa-
tions on the strength of highly oriented fibers. For
PE fibers with a low molecular weight, for exam-
ple, intermolecular slippage involving rupture of
secondary bonds occurs in preference to chain
scission, yielding tensile curves that are bell
shaped at the end of the tensile curve. At high
molecular weight, primary as well as secondary
bond rupture occurs, yielding tensile curves with
a brittle fracture. An investigation of the effect of
chain-end segregation on the tensile strength
showed that for an increasing degree of chain-end
segregation of monodisperse PE, the strength de-
creased rapidly, whereas the modulus was af-

fected only moderately.90 For the molecular
weight range 103 , M , 105, for PE fibers a
relation was established between the strength
and the reduced molecular weight Mred 5 M/=n
given by

sb } Mred
0.53 (36)

where M is the molecular weight and n the num-
ber of units involved in one group with chain
ends. For n 5 1 there is no agglomeration of chain
ends, and all chain ends are perfectly distributed
throughout the structure. The results of this
study indicate that the chain-end segregation
causes an apparent reduction in the “effective”
molecular weight. For PpPTA fibers, Weyland91

found the experimental relationship between fi-
ber strength and molecular weight depicted in
Figure 34. A summary of the results of experi-
ments to determine the influence of molecular
weight on the tenacity of aromatic polyamides is
given by Yang.92 His study suggests that polymer
fibers made by in situ polymerization have a
higher tenacity at the same molecular weight
than fibers spun from spinning solutions pre-
pared by dissolution of solid polymer.

In the case of PpPTA fibers, the model by Ter-
monia and Smith shows that the process of frac-
ture is initiated by the breaking of a small num-
ber of primary bonds and not by hydrogen bond
failure. Apparently, the model does not predict a
fibrillated fracture morphology caused by shear
failure as has clearly been observed for the
PpPTA, PBO, and PBT fibers. In a further devel-
opment of his molecular modeling of strength,
Termonia studied the influence of chain-end seg-

Figure 34 The observed relation between the
strength of PpPTA fibers and the inherent viscosity.91
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regation and chain-length distribution on the
transverse and longitudinal size dependence of
the strength. He found that small macroscopic
cracks have little influence on the fiber strength/
diameter relationship.78 A strong effect of chain-
end segregation is found for the relation between
fiber diameter and strength for a monodisperse
chain-length distribution, whereas a much
weaker relationship is found for a polydisperse
distribution. Interestingly, the model predicts a
length dependence of the strength which is in
agreement with the values found for PpPTA fi-
bers.

Yoon93 has developed a theory of the tensile
strength for highly oriented liquid crystal poly-
mer fibers in which the fiber microstructure is
assumed to be similar to a short fiber composite in
which the reinforcing fibers act as the polymer
chains. Fracture of the fiber occurs when the
shear stress between adjacent chains exceeds a
critical value. The theory also includes the effects
of the molecular weight distribution and the ori-
entation distribution of the chains. The results
are compared with experimental data for a copol-
ymer of 1,4-oxybenzoate and 6,2-oxynaphthoate.93

Jones and Martin94 used molecular modeling of
poly(p-phenylenebenzobisoxazole) or PBZO to
study the effect of chain-end density in a polymer
with perfectly oriented chains on the tensile prop-
erties of the fiber. They show that extended-chain
molecules of finite length are analogous to micro-
composites of short fibers, and found that the
interchain shear modulus has no effect on the
ultimate strength. Optimum combinations of the
shear strength to chain modulus ratio and the
chain aspect ratio lead to maximum strength. In
contrast with the concave shape of the observed
curves and of the curves obtained with the con-
tinuous chain model of Baltussen and Northolt,
the stress–strain curves computed with this
model for various chain lengths, shear strengths,
and shear moduli, showed a convex shape.

Knoff95 noticed the similarity between the ten-
sile failure morphology of PpPTA fibers and that
of a uniaxially oriented fiber-reinforced macro-
composite. The latter fails in tension via matrix
shear failure initiated at the fiber ends. This
made him conclude that, if shear forces at a dis-
continuity exceed the shear strength of the bond
between the fibrils, the fiber tensile strength
should be proportional to the fiber shear strength,
as he indeed observed.95

None of these models take into account that in
polymer fibers the chains display an orientation

distribution that contracts during extension. In
particular, they do not offer an explanation for
the failure envelope. As shown by the continuous
chain model, the major part of the deformation
mechanism during extension of the fibers consists
in the contraction of the chain orientation distri-
bution due to shear deformation resulting in
strain hardening. Figure 35 shows the filament
tensile curves up to fracture of cellulose II fibers
with a wide range of the initial modulus.96 The
black dots are the stress values at fracture cor-
rected for contraction of the filament cross-section
during tensile deformation. It is observed that
these points lie approximately on a hyperbola,
also called the failure envelope. If a linear stress–
strain curve is assumed for the points on the
hyperbola, the work up to fracture per unit vol-
ume

W 5 E
0

«b

sd« (37)

where «b is the elongation at break, is constant.
In Figure 35, the dotted curve is the hyperbola, sb
5 2W/«b, with W equal to 0.058 GJ/m3, giving the
best fit with the the corrected strength values.
This work consumes about 10% of the total energy
content of the hydrogen bonds in cellulose, as-
suming that all possible intermolecular hydrogen
bonds are formed. It indicates that a major part of
the strain energy is stored in the intermolecular

Figure 35 Tensile curves of cellulose II fibers. The
black dots are the strength values after correction for
the decrease of the cross-section. The dotted line is the
hyperbola sb 5 0.116/«b, and the dashed line is the
theoretical curve for W 5 0.060 GJ/m3 or tb 5 0.22
GPa.
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bonds as a result of shear deformation between
the chains. Moreover, this deformation mecha-
nism suggests that when all possible interchain
hydrogen bonds are formed and fracture of the
fiber is only due to rupture of hydrogen bonds, the
work to fracture should be constant, irrespective
of the degree of chain orientation in the fiber.

It will now be shown for a hypothetical fila-
ment in which the chains have a single disorien-
tation angle Q that the shape of the failure enve-
lope can be computed on the basis of the shear
deformation only. The relation between shear
stress, t, and shear strain, g, in engineering units
is t 5 gg and the work per unit volume in engi-
neering units up to fracture is given by

W 5 E
go

gb

tdg (38)

where g is the shear modulus and gb 2 go the
total shear strain up to fracture. In the continu-
ous chain model for fiber extension, the tensor
notation is used, which implies that g 5 2(Q 2 u).
Using the relation dt 5 22gdu, the expression
for the work to fracture or the strain becomes

W 5 22 E
Q

ub

tdu 5 22 E
Q

ub

d~tu!

2 4g E
Q

ub

~Q 2 u!d~Q 2 u! (39)

where Q is the initial angle of a chain segment at
zero stress, and ub the angle at fracture, respec-
tively. After integration, eq. (39) becomes

W 5 2tb~Q 2 ub! 2 2g~Q 2 ub!
2 (40)

Because tb 5 2g(Q2ub), the work to fracture can
be written as

W 5 2g~Q 2 ub!
2 5

tb
2

2g (41)

Thus, the assumption that W is constant for all
filaments, irrespective of their degree of chain
orientation, implies that the shear stress at frac-
ture, tb, is a constant, and that the filaments
break when this critical shear stress is attained.
To calculate the locus of the end points of the

tensile curves («b, sb) for a constant value of work
to fracture, the relations between Q, ub, tb, and
«b are required. They are provided by the contin-
uous chain model, viz.,

tb 5 2sbsin ubcos ub (42)

and

ub 2 Q < 2
sb

2g sin ubcos ub (43)

where sb is the stress at fracture or the strength
of the filament. The fracture strain due to shear
deformation, «b

sh, is given by the change in the
projection length of the chain segment onto the
filament axis

«b
sh 5

cos ub

cos Q
2 1 (44)

By using eqs. (41), (43), and (44), and a value for
g of 0.4 GPa, the failure envelope for a strain
energy value of 0.060 GJ/m3 or a critical shear
stress of tb 5 0.22 GPa has been calculated (see
Fig. 35). The assumption of a single value for g is
a simplification and only acceptable as a first
approximation. Moreover, the value of 0.4 GPa is
considerably smaller than reported earlier.27

However, the value to be used in the tensile curve
refers to low frequencies. In addition, the tensile
deformation of cellulose fibers comprises vis-
coelastic and plastic contributions, which can be
incorporated into the calculation if the value for
the effective shear modulus is considered to be
rather low. This simplification does not invalidate
the main argument viz., that fiber fracture is
caused by rupture of intermolecular hydrogen
bonds as a result of the shear deformation. This is
confirmed by the observation that the fracture
morphology of cellulose fibers has a more or less
fibrillar nature.

Considering this simple model for a fiber with a
single disorientation angle, the agreement be-
tween the observed and computed failure enve-
lopes is surprisingly good. It is noted in Figure 35
that the observed strength of the textile viscose
fiber lies well below the failure envelope. In view
of the preceding discussion, this is probably
caused by a lower molecular weight (DP 5 400 for
the textile fiber with the high elongation at break
and 600 for the other cellulose fibers) and by the
broad orientation distribution, which results in a
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shear modulus g that is much lower than in the
other cellulose fibers. The discrepancy with the
calculated failure envelope for the fiber with the
highest modulus may be caused by an accompa-
nying decreased tolerance for flaws and impuri-
ties.

This analysis indicates that maximum strength
of cellulose II fibers is obtained when all possible
hydrogen bonds between the chains are formed.
Hence, a strong fiber has few chain ends or a high
molecular weight, very few impurities which may
cause structural irregularities, a high crystallin-
ity, and in particular, a large crystallite size along
the chain direction, this being a prerequisite for
the formation of the maximum number of inter-
chain bonds.

An alternative, and more simple approach, to
this explanation of the failure envelope is fur-
nished by the analysis of the shear stress on a
domain. At first sight, one might think that the
shear stress t 5 s sin u cos u becomes negligibly
small for large fiber stresses. According to the
continuous chain model, this is not the case. An
analytical approximation of eq. (7) is given by

tan u 5
tan Q

S1 1
s

2gD
(45)

which yields an expression for the shear stress as
a function of the initial orientation angle, the
shear modulus, and the applied axial stress

t <
2 tan Q

tan2Q

sS1 1
s

2gD
1

1
s

1
1
2g

(46)

So, according to the continuous chain model, for a
large axial stress, the shear stress tends to 22g
tan Q, whereas the orientation angle u tends to
zero. For the case of cellulose II fibers, Figure
36(a) shows the shear stress as a function of the
fiber stress calculated for several initial domain
orientations applying eq. (46) and g 5 0.4 GPa.
Assuming a constant critical shear stress of 0.2
GPa for shear failure and subsequent rupture of
the fiber, this graph shows that, for a well-ori-
ented domain at an initial angle of 20°, failure
will occur at a fiber stress of 1.8 GPa, whereas at
an angle of 40°, the failure stress is 0.5 GPa.
Figure 36(b) shows the results for PpPTA fiber

applying g 5 2 GPa and a critical shear stress of
0.4 GPa. Although not taking chain stretching
into account, these examples illustrate in a sim-
ple way the significance of the shear deformation
and of the critical shear stress for the course of
the failure envelope. Moreover, this model clearly
demonstrates that a contracted chain orientation
distribution without tails is a prerequisite for
making high-strength polymer fibers, i.e., a large
modulus should lead to a high strength of the
fiber.

This shear failure model has the following
interesting result. If, during tensile extension
of the fiber, the shear stress remains smaller
than the critical shear stress, or in the limiting
condition 2g tan Q , tc, then the fiber will fail
because of longitudinal fracture instead of

Figure 36 The shear stress as a function of the axial
stress for several initial orientation angles of the do-
main: (a) cellulose II fibers, g 5 0.4 GPa and failure
stresses are indicated by arrows for a critical shear
stress of 0.2 GPa; (b) PpPTA fibers, g 5 2 GPa and
failure stresses are indicated for 0.4 GPa.
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shear fracture. This may result in a brittle frac-
ture morphology. Suppose further that tc equals
a certain fraction of the internal shear modulus
or tc 5 c9g, then longitudinal fracture in organic
polymer fibers occurs when tan Q , c9/2. Stated
differently, polymer fibers with initial chain
orientation angles for which Q . arctan(c9/2)
are likely to show a fibrillar fracture morphol-
ogy.

Below, an extended strength model including
the strain energy of the chain extension is out-
lined. It is partly based on the strength theory for
uniaxial macrocomposites, and incorporates the
continuous chain model for the fiber extension.
According to Tsai and Hill, the strength of a uni-
axial composite in a direction making an angle u
with respect to the parallel aligned filaments is
given by

scomp 5 Fcos4u

sL
2 1 S 1

tB
2 2

1
sL

2Dsin2u cos2u 1
sin4u

sT
2 G21/2

(47)

Here, sL is the strength of the filaments in the
composite, sT is the strength normal to the com-
posite’s symmetry axis, and tB is the critical
shear strength in a plane parallel to the fila-
ments. The values of sT and tB are determined by
the filaments, the matrix, and the adhesion of the
filaments to the matrix.97

In a polymer fiber, a domain around a chain
segment in the continuous chain model can be
regarded as a composite, with the chain corre-
sponding to the reinforcing fiber and the inter-
chain interactions having the same function as

the matrix in the macrocomposite. Similar to the
composite, a critical axial strength sB, a critical
shear strength tB, and a transverse strength sT
of the domain are defined, the values of which are,
among others, governed by the molecular weight
distribution. It can be shown that for well-ori-
ented fibers, the third term in eq. (47) is much
smaller than the first and second terms and may
be neglected. As the load on the fiber is increased,
the domains in the fiber are stretched along the
chain axis because of the normal stress s cos2u,
undergoing a rotation toward the fiber axis due to
the shear stress t 5 s sin u cos u. When the
domains are rotated to an angle ub such that the
fiber stress equals the stress sb given by

sb < Fcos4ub

sB
2 1 S 1

tB
2 2

1
sL

2Dsin2ubcos2ubG21/2

(48)

fiber fracture is assumed. Hence, eqs. (7) and (48)
yield the fiber strength as a function of the critical
shear stress tB and axial strength sB, and the
chain angle at fracture ub. Using eq. (8), the elon-
gation at fracture can be found. For a hypotheti-
cal fiber with a single disorientation angle of the
chain segments, the fracture criterion given by
eq. (48) would be sufficient. As in real fibers there
is an orientation distribution, an additional con-
straint is required. Failure of the fiber is now
assumed when, for a certain fraction of chains in
the distribution, the fracture condition (48) is ful-
filled. This fraction is called the critical fraction
cb. Theoretical estimates of strength values for
inorganic materials often result in a certain per-
centage varying from 10 to 20% of the modulus.

Figure 37 The strength as a function of the modulus
for PpPTA fibers according to the composite model with
a Gaussian distribution for the chain orientation.

Figure 38 The strength as a function of the fracture
strain (failure envelope) according to the composite
model with a Gaussian orientation distribution.
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On the basis of the finite length of the polymer
chain, Smith and Termonia have shown that, de-
pending on the molecular weight, this percentage
is considerably smaller for polymer chains.89,90

Neglecting the effect of flaws and inhomogene-
ities, the axial strength of a domain sB will de-
pend not only on the chain modulus and the mo-
lecular weight distribution but, because of the
stress transfer between adjacent chains, also on
the secondary bonds between the chains. A high
value of the critical shear strength tB will be
achieved for a high g value, determined by the
interchain bonds, the packing order of the chains,
and the molecular weight distribution.

The results of this model for PpPTA fibers for
different cb values based solely on elastic exten-
sion of the fiber are depicted in Figures 37 and 38.
In these calculations, a Gaussian orientation dis-
tribution was used together with ec 5 240 GPa, g
5 1.9 GPa, sB 5 5.5 GPa, and tB 5 0.4 GPa. It
is clearly shown that a modulus increase results
in higher strength. Figure 38 again displays the
typical shape of the failure envelope. Both results
were obtained with the continuous chain model,
but only elastic deformation was considered. The
contraction of the chain distribution due to the
shear deformation lies at the basis of these re-
sults. Good agreement with the experimental
data is obtained, although presumably because of
the neglect of yielding and the possibility of chain
slip, the observed failure strain is slightly larger
than computed with the model.

Also, in the case of flexible chain polymers, the
relation between modulus and strength appears
to be observed. Huang et al.98 obtained PET fibers
with moduli and strengths up to 39 and 2.3 GPa,
respectively. These fibers were prepared from

high molecular weight material: to this end,
amorphous fibers were first prepared by solution
spinning and, subsequently coextruded at 90°C
and drawn at 200°C. Figure 39 shows an almost
linear relation between modulus and strength for
this fiber. High-speed spun PET fibers also dis-
play a failure envelope. Figure 40 depicts the end
points of the tensile curves of a series of yarns
spun at speeds between 2000 to 3500 m/min, and
stretched at different draw ratios, together with
the failure envelope of cellulose II fibers.99 The
PET data have been rescaled to account for the
difference between yarn and filament testing. In
the case of flexible chain polymers, such as PET,
flow will be initiated at a critical shear stress and
precede fiber failure. Indeed, PET fibers obtained
by medium and low draw ratios display a so-
called “flag” at the end of the tensile curve due to
flow, which causes the deviation of the end points
of these fibers from the hyperbola-shaped failure
envelope.

Apart from the variable degree of covalent
bonding between the basal planes, carbon fibers
are intrinsically brittle also because of the high
values of the elastic constants of the aggregates,
which result in high local stresses near flaws. The
tensile modulus of the graphite plane is about 900
GPa, the modulus along the direction normal to
the graphite plane is at least 30 GPa, and the
modulus for shear between the basal planes
ranges from 10 for pitch-based fibers to about 30
GPa for PAN-based fibers. The recorded tensile
strengths up to 7 GPa are for epoxy-impregnated
bundles. In general, filament strength values for
a test length of 10 cm are considerably smaller

Figure 39 The strength as a function of the modulus
for high molecular weight PET fibers.98

Figure 40 The end points of the tensile curves of PET
yarns spun at different spinning speeds and stretched
with different draw ratios together with the failure
envelope of cellulose II fibers.99
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than for the high-modulus/high-strength polymer
fibers like ultrahigh molecular weight PE and
PBO, which attain values of 6 GPa at this test
length. Figure 33 depicts the average filament
strength of an intermediate modulus PAN-based
carbon fiber with a modulus of 272 GPa as a
function of the test length. The filament strength
at 2-mm test length of 6.3 GPa is higher than the
impregnated bundle strength of 5.7 GPa. The co-
valent sp3Osp3 carbon-to-carbon bonds between
the graphite planes prevent stress concentrations
around inhomogeneities and flaws from being di-
minished by energy dissipation because of local
plastic deformation. In this respect, the carbon
fibers are very different from polymer fibers. In
contrast to polymer fibers such as cellulose, PpPTA,
and PBO, which show a more or less fibrillated
fracture morphology, carbon fibers show a brittle
fracture morphology. However, as shown by
Sawada and Shindo,59 this does not exclude a shear
failure mode. They noticed that the torsional
strength of carbon fibers increased with increas-
ing tensile strength, which is similar to the
relation observed by Knoff95 between the shear
strength and the tensile strength of PpPTA fibers.

Reynolds and Sharp100 have argued that the
elastic energy due to shear stresses in misori-
ented crystallites in carbon fibers is sufficient to
transverse fracture the graphite plane, instead of
causing shear failure along the basal planes, if
the applied tensile stress is in the range of the
observed strength of carbon fibers. Hence, a crack
will propagate both across the basal plane and, by
transference of shear stress, through adjacent
layer planes. Consequently, processing conditions

that reduce misorientations, e.g., stretching, are
likely to improve the fiber strength.100 In a study
of the microstructure of mesophase pitch-based
carbon fibers Pennock et al.101 suggest that the
particular folding and disclination structure, and
the absence of the microporous phase found in
these fibers, contribute to their improved strength
compared with other pitch-based fibers.

The different models for the description of the
strength of polymer fibers have many aspects in
common, and they succeed to a variable degree in
explaining the observed relations, e.g., between
strength and modulus, between strength and mo-
lecular weight, and the shape of the failure enve-
lope. This suggests that the less predictable ef-
fects of nonuniformity and flaws are not major
factors determining the strength of these fibers.
Certainly, the models need further refining, but
the gap between the achieved and the estimated
ultimate strengths is probably not large. This is
in stark contrast to the situation for carbon fibers.
Presently, there is no quantitative model describ-
ing to some extent the strength of these fibers,
which is solely due to the dominant stochastic
effects of inhomogeneities and flaws.

In conclusion, we have shown that the mechan-
ical properties, apart from the yielding in polymer
fibers, are determined by the orientation distribu-
tion of the composing elements, by the elastic
modulus of the element, viz., the chain modulus ec
in case of polymer fibers and the in-plane modu-
lus of the graphite plane e1 for the carbon fibers,
and by the modulus for shear between the ele-
ments g. A survey of the value of these constants
for a limited number of fibers is given in Table VI.

Table VI Basic Elastic Constants of Organic Fibers

Fiber
ec or e1

(GPa) g (GPa) Interelement Bond

Ultrahigh molecular weight PE 300 0.7–0.9 van der Waals
POK (polyketone) 260 1.0 van der Waals/dipole
PET 125 1.0–1.3 van der Waals/dipole
Cellulose II 90 2.0–5.0a Bidirectional hydrogen
Cellulose I 140 1.5 Unidirectional hydrogen/van der Waals
PpPTA 240 1.5–2.7 Unidirectional hydrogen/van der Waals
PBO 500 1.0 van der Waals
PIPD 550 6.0 Bidirectional hydrogen
Pitch-based carbon 800–1000 6–12b Covalent (few)
PAN-based carbon 900–1100 14–30b Covalent (many)

Listed are the elastic modulus of the building element, ec or e1, the modulus for shear between the elements, g, and the kind
of major interelement bonds.

a Depending on water content.
b Depending on degree of graphitization.
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